съёмка местности с воздуха и из космоса сканирующей аппаратурой, которая позволяет принимать излучаемые и отражаемые объектами электромагнитные волны, усиливать их и преобразовывать электронно-оптическим путём в видимое изображение, а затем воспроизводить его с экрана преобразователя на фотоплёнке (движущейся с той же скоростью, что и носитель аппаратуры). При Ф. а. построение последовательных изображений осуществляется путём их развёртки: в поперечном направлении - за счёт работы сканирующего устройства, в продольном - за счёт движения носителя. Ф. а. может выполняться как в видимой части спектра, так и вне её пределов. Из практически применяемых видов Ф. а. (см.
Аэрометоды) наибольшее значение приобрели инфратепловая и радиолокационная аэросъёмки. Каждая из них, как правило, требует своих условий и режимов съёмочных работ. Фотоэлектронные аэроснимки по общему облику изображения местности напоминают обычные аэрофотоснимки. Однако они воспроизводят не внешний вид наземных объектов, а их тепловые свойства или характер отражения радиоволн, что позволяет использовать эти аэроснимки как источник дополнительной информации.
Дешифрирование фотоэлектронных аэроснимков осуществляется на той же принципиальной основе, что и аэрофотоснимков, но в данном случае приходится иметь дело с менее детализированным изображением и учитывать значительно большее число природных и технических факторов, предопределяющих особенности передачи тех или иных объектов.
Инфратепловая аэросъёмка (инфракрасная нефотографическая, ИК-термальная) относится к числу пассивных Ф. а. (т. е. без заданного импульса) и предназначена для регистрации собственного теплового излучения объектов местности в диапазоне длин волн 1,2-25 мкм. Из имеющихся в этом диапазоне нескольких атмосферных "окон пропускания" тепловых лучей используются соответствующие интервалам 3,4-4,2 мкм для фиксации излучения от сильно нагретых тел и 8-12 мкм - от слабо нагретых. Сканирование в процессе инфратепловой Ф. а. ведётся перпендикулярно линии полёта, с помощью оптического устройства, обеспечивающего большой угол обзора (порядка 60°). Современные приборы для этой Ф. а., называются аэросъёмочными тепловизорами, могут давать аэроснимки самых различных масштабов с геометрическим разрешением деталей на местности около 0,001 от высоты съёмки и передачей температурных различий в 0,5-1 °С. Поскольку тепловые контрасты на земной поверхности подвержены значительным изменениям - от сезона к сезону и в течение суток, в зависимости от экспозиции по отношению к солнцу и различий в тепловой инерции тел, работы искусственных источников тепла, а также от метеорологической обстановки (особенно облачности), - для выявления свойств изучаемых объектов в ряде случаев целесообразна неоднократная (в т. ч. за пределами светового дня) инфратепловая Ф. а. одного и того же участка местности. Таким образом, высокая изменчивость регистрируемых величин, предопределяя значительные трудности при выборе параметров съёмки, вместе с тем даёт дополнительные возможности для воспроизведения объектов на аэроснимках. Данный вид съёмки эффективен при создании карт вулканической деятельности (зон температурных аномалий, выходов лавы, нагретых газов и вод) и мерзлотных явлений, выделении увлажнённых грунтов, исследованиях температурного режима и загрязнённости водоёмов и характера морских льдов, обнаружении водотоков, закрытых растительностью, оконтуривании мест возгорания под землёй и на поверхности (в отвалах, лесных массивах и др.), проверке энергосистем и дренажных сооружений, а также при периодическом контроле состояния посевов.
Радиолокационная (радарная)
аэросъёмка относится к числу активных Ф. а. и предназначена для регистрации отражённых наземными объектами электромагнитных волн радиодиапазона (от нескольких
мм до нескольких
м)
, источником излучения и приёмником которых служит установленная на носителе радиолокационная система. В картографии наибольшее применение находит
Радиолокационная станция бокового обзора, работающая в интервале волн 1-3
см. Сканирование ведётся с помощью особого антенного устройства и обеспечивает получение изображения местности в виде двух широких полос, параллельных линии полёта. Преобладающие масштабы радиолокационных аэроснимков (см. вклейку к ст.
Аэроснимок) 1: 60 000 - 1: 400 000. Наибольшее разрешение деталей на местности 3-5
м. Характер воспроизведения на этих аэроснимках наземных объектов определяется и различной интенсивностью отражения ими радиоволн, которая в свою очередь зависит от свойств и формы объектов, крутизны и направления склонов рельефа. Изменяя, с учётом этих особенностей, основные параметры станций (длину волн, частоту и форму импульсов), добиваются требующегося разделения на аэроснимках изображений изучаемых объектов. Радиолокационная Ф. а. может выполняться вне зависимости от времени суток и состояния атмосферы, т. е. является всепогодной. Благодаря способности радиоволн проникать на десятки
см в земную поверхность основная сфера её применения - геологическая разведка и изучение льдов. Особенно существенно, что при этой аэросъёмке, по сравнению с обычной фотографической, обеспечивается значительно лучшая дешифрируемость разрывных тектонических нарушений, характера горных пород под растительностью, снегом и поверхностными наносами, механического состава (в особенности размеров частиц) последних и наличия примесей металлов, структуры ледовых образований, трещин и русел талых вод в толще льда. На радиолокационных аэроснимках чётче воспроизводятся наземные объекты, приуроченные к глубоко затенённым участкам. Поскольку по этим снимкам может быть построена стереоскопическая модель местности (с точностью определения высот до 15
м)
, они используются при изучении некоторых труднодоступных районов (полярные пустыни, экваториальные джунгли с постоянной облачностью и др.) для создания топографических карт (См.
Топографические карты) обзорного характера.
Лит.: Смирнов Л. Е., Аэрокосмические методы географических исследований, Л., 1975: Харин Н. Г., Дистанционные методы изучения растительности, М., 1975; Богомолов Л, А., Дешифрирование аэроснимков, М., 1976; Применение новых видов аэросъемок при геологических исследованиях, Л., 1976; Многозональная аэрокосмическая съемка и ее использование при изучении природных ресурсов, М., 1976; Remote sensing. Techniques for environmental analysis, Santa Barbara, 1974; Manual of Remote sensing, t. 1-2, Waschington, 1975. См. также лит. к статье
Космическая съёмка.
Л. М. Гольдман.